Part Number Hot Search : 
AD22304 PCF85 FFM102 154K0 BR86D CJF6107 MC100LV 82537070
Product Description
Full Text Search
 

To Download LM324PT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LM124-LM224-LM324
Low power quad operational amplifiers
Features

Wide gain bandwidth: 1.3 MHz Input common-mode voltage range includes ground Large voltage gain: 100 dB Very low supply current per amplifier: 375 A Low input bias current: 20 nA Low input offset voltage: 5 mV max. (For more accurate applications, use the equivalent parts LM124A-LM224A-LM324A which feature 3 mV max.) Low input offset current: 2 nA Wide power supply range: - Single supply: +3 V to +30 V - Dual supplies: 1.5 V to 15 V
N DIP14 (Plastic package)

D SO-14 (Plastic micropackage)
Description
These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. P TSSOP-14 (Thin shrink small outline package)
Order codes
Part number LM124N LM124D/DT LM224N LM224D/DT LM224PT LM324N LM324D/DT LM324PT Temperature range -55C, +125C Package DIP SO DIP SO TSSOP (Thin shrink outline package) DIP SO TSSOP (Thin shrink outline package) Packing Tube Tube or tape & reel Tube Tube or tape & reel Tape & reel Tube Tube or tape & reel Tape & reel
-40C, +105C
0C, +70C
October 2006
Rev 5
1/19
www.st.com 19
Contents
LM124-LM224-LM324
Contents
1 2 3 4 5 6 Pin & schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Typical single-supply applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Macromodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.1 6.2 6.3 DIP14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 SO-14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 TSSOP14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/19
LM124-LM224-LM324
Pin & schematic diagram
1
Pin & schematic diagram
Figure 1. Pin connections (top view)
Output 1 1 Inverting Input 1 2 Non-inverting Input 1 3 VCC + 4 Non-inverting Input 2 Inverting Input 2 5 6 + + + + 14 Output 4 13 Inverting Input 4 12 Non-inverting Input 4 11 VCC 10 Non-inverting Input 3 9 8 Inverting Input 3 Output 3
Output 2 7
Figure 2.
Schematic diagram (1/4 LM124)
3/19
Absolute maximum ratings
LM124-LM224-LM324
2
Absolute maximum ratings
Table 1.
Symbol VCC Vi Vid Ptot Supply voltage Input voltage Differential input voltage Power dissipation N suffix D suffix Output short-circuit duration (2) Iin Toper Tstg Tj Input current (3) Operating free-air temperature range Storage temperature range Maximum junction temperature Thermal resistance junction to ambient(4) SO14 TSSOP14 DIP14 Thermal resistance junction to case SO14 TSSOP14 DIP14 HBM: human body model(5) ESD MM: machine model(6) 50
(1)
Absolute maximum ratings
Parameter LM124 LM224 16 or 32 32 32 500 500 400 Infinite 50 50 mA C C C 500 400 LM324 Unit V V V mW
-55 to +125 -40 to +105 0 to +70 -65 to +150 150 103 100 83 31 32 33 250 150 1500
+
Rthja
C/W
Rthjc
C/W
V
CDM: charged device model
1. Either or both input voltages must not exceed the magnitude of VCC or VCC-. 2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. 3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous shortcircuits on all amplifiers. These are typical values given for a single layer board (except for TSSOP, a twolayer board). 5. Human body model, 100 pF discharged through a 1.5 k resistor into pin of device. 6. Machine model ESD, a 200 pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5 ), into pin-to-pin of device.
4/19
LM124-LM224-LM324
Electrical characteristics
3
Electrical characteristics
Table 2.
Symbol Input offset voltage (1) Tamb = +25 C LM124-LM224 LM324 Tmin Tamb Tmax LM124-LM224 LM324 Iio Input offset current Tamb = +25 C Tmin Tamb Tmax Input bias current (2) Tamb = +25 C Tmin Tamb Tmax Large signal voltage gain VCC+ = +15 V, RL = 2 k, Vo = 1.4 V to 11.4 V Tamb = +25 C Tmin Tamb Tmax Supply voltage rejection ratio (Rs 10 k) VCC+ = 5 V to 30 V Tamb = +25 C Tmin Tamb Tmax Supply current, all Amp, no load Tamb = +25 C VCC = +5 V VCC = +30 V Tmin Tamb Tmax VCC = +5 V VCC = +30 V Input common mode voltage range VCC = +30 V (3) Tamb = +25 C Tmin Tamb Tmax Common mode rejection ratio (Rs 10 k) Tamb = +25 C Tmin Tamb Tmax Output current source (Vid = +1 V) VCC = +15 V, Vo = +2 V 2
VCC+ = +5 V, VCC-= Ground, Vo = 1.4 V, Tamb = +25 C (unless otherwise specified)
Parameter Min. Typ. Max. Unit
2
Vio
5 7 7 9 30 100 150 300
mV
nA
Iib
20
nA
Avd
50 25
100
V/mV
SVR
65 65
110
dB
ICC
0.7 1.5 0.8 1.5
1.2 3 1.2 3
mA
Vicm
0 0 70 60 20 80
VCC -1.5 VCC -2
V
CMR
dB
Isource
40
70
mA
5/19
Electrical characteristics Table 2.
Symbol
LM124-LM224-LM324
VCC+ = +5 V, VCC-= Ground, Vo = 1.4 V, Tamb = +25 C (unless otherwise specified)
Parameter Output sink current (Vid = -1 V) VCC = +15 V, Vo = +2 V VCC = +15 V, Vo = +0.2 V High level output voltage VCC = +30 V Tamb = +25 C, RL = 2 k Tmin Tamb Tmax Tamb = +25 C, RL = 10 k Tmin Tamb Tmax VCC = +5 V, RL = 2 k Tamb = +25C Tmin Tamb Tmax Min. Typ. Max. Unit
Isink
10 12
20 50
mA A
VOH
26 26 27 27 3.5 3
27 28 V
VOL
Low level output voltage (RL = 10 k) Tamb = +25C Tmin Tamb Tmax Slew rate , VCC = 15 V, Vi = 0.5 to 3 V, RL = 2 k CL = 100 pF, unity gain Gain bandwidth product , VCC = 30 V, f = 100 kHz,Vin = 10 mV, RL = 2 k CL = 100 pF Total harmonic distortion f = 1 kHz, Av = 20 dB, RL = 2 k, Vo = 2 Vpp, CL = 100 pF, VCC = 30 V Equivalent input noise voltage f = 1 kHz, Rs = 100 , VCC = 30 V Input offset voltage drift Input offset current drift Channel separation 1 kHz f 20 kHZ
(4)
5
20 20
mV
SR
0.4
V/s
GBP
1.3
MHz
THD
0.015
%
en DVio DIio Vo1/Vo2
40 7 10 120 30 200
nV ----------Hz
V/C pA/C dB
1. Vo = 1.4 V, Rs = 0 , 5 V < VCC+ < 30 V, 0 < Vic < VCC+ - 1.5 V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0. V. The upper end of the common-mode voltage range is VCC+ - 1.5 V, but either or both inputs can go to +32 V without damage. 4. Due to the proximity of external components, ensure that stray capacitance between these external parts does not cause coupling. Typically, this can be detected because this type of capacitance increases at higher frequencies.
6/19
LM124-LM224-LM324
Electrical characteristics
Figure 3.
Input bias current vs. ambient temperature
INPUT BIAS CURRENT versus AMBIENT TEMPERATURE
Figure 4.
Current limiting
IB (nA)
24 21 18 15 12 9 6 3 0
-55-35-15 5 25 45 65 85 105 125 AMBIENT TEMPERATURE (C)
Figure 5.
Input voltage range
Figure 6.
Supply current
Figure 7.
Gain bandwidth product
Figure 8.
Common mode rejection ratio
7/19
Electrical characteristics
LM124-LM224-LM324
8/19
LM124-LM224-LM324
Electrical characteristics
Figure 9.
Input current
Figure 10. Large signal voltage gain
Figure 11. Power supply & common mode rejection ratio
Figure 12. Voltage gain
9/19
Typical single-supply applications
LM124-LM224-LM324
4
Typical single-supply applications
Figure 14. High input Z adjustable gain DC instrumentation amplifier
Figure 13. AC coupled inverting amplifier
if R1 = R5 and R3 = R4 = R6 = R7
1 e0 = 1 + ----------- (e2 -e1) R 2 2R
As shown e0 = 101 (e2 - e1).
Figure 15. AC coupled non inverting amplifier
Figure 16. DC summing amplifier
e0 = e1 +e2 -e3 -e4 Where (e1 +e2) (e3 +e4) to keep e0 0V
Figure 17. Non-inverting DC gain
Figure 18. Low drift peak detector
10/19
LM124-LM224-LM324
Typical single-supply applications
Figure 19. Active bandpass filter
Figure 20. High input Z, DC differential amplifier
R R 1 4 For ------- = ------R R 2 3 (CMRR depends on this resistor ratio match)
Fo = 1kHz Q = 50 Av = 100 (40dB)
e0
1 + R4 R ------- 3
(e2 - e1)
As shown e0 = (e2 - e1)
Figure 21. Using symmetrical amplifiers to reduce input current (general concept)
11/19
Macromodels
LM124-LM224-LM324
5
Note:
Macromodels
Please consider the following before using this macromodel: All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product. Data derived from macromodels that is used outside of the specified conditions (Vcc, temperature, etc.) or even worse, outside of the device operating conditions (Vcc, Vicm, etc.) is not reliable in any way. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT LM124 1 3 2 4 5 ******************************************************* .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02
12/19
LM124-LM224-LM324 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS The values provided in Table 3 are derived from this macromodel. Table 3.
Symbol Vio Avd Icc Vicm VOH VOL Ios GBP SR RL = 2 k (VCC+=15V) RL = 2 k No load, per amplifier
Macromodels
Vcc+ = +15V, Vcc- = 0V, Tamb = 25C (unless otherwise specified)
Conditions Value 0 100 350 -15 to +13.5 +13.5 5 +40 1.3 0.4 Unit mV V/mV A V V mV mA MHz V/s
RL = 10 k Vo = +2 V, VCC = +15 V RL = 2 k, CL = 100 pF RL = 2 k, CL = 100 pF
13/19
Package information
LM124-LM224-LM324
6
Package information
In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK(R) packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com.
14/19
LM124-LM224-LM324
Package information
6.1
DIP14 package
Dimensions Ref. Min. a1 B b b1 D E e e3 F I L Z 1.27 3.3 2.54 0.050 8.5 2.54 15.24 7.1 5.1 0.130 0.100 0.51 1.39 0.5 0.25 20 0.335 0.100 0.600 0.280 0.201 1.65 Millimeters Typ. Max. Min. 0.020 0.055 0.020 0.010 0.787 0.065 Inches Typ. Max.
15/19
Package information
LM124-LM224-LM324
6.2
SO-14 package
Dimensions Ref. Min. A A1 A2 B c c1 D H e E L k 3.8 0.5 8.55 5.8 1.27 4.0 0.127 0.149 0.019 8.75 6.2 0.35 0.19 0.1 Millimeters Typ. Max. 1.75 0.2 1.65 0.46 0.25 0.013 0.007 45 (typ.) 0.336 0.228 0.050 0.157 0.050 0.344 0.244 0.003 Min. Inches Typ. Max. 0.068 0.007 0.064 0.018 0.010
8 (max.)
16/19
LM124-LM224-LM324
Package information
6.3
TSSOP14 package
Dimensions Ref. Min. A A1 A2 b c D E E1 e K L1 0 0.45 0.60 0.05 0.8 0.19 0.09 4.9 6.2 4.3 5 6.4 4.4 0.65 BSC 8 0.75 0 0.018 0.024 0.010 1 Millimeters Typ. Max. 1.2 0.15 1.05 0.30 0.20 5.1 6.6 4.48 0.002 0.031 0.007 0.004 0.193 0.244 0.169 0.197 0.252 0.173 0.0256 BSC 8 0.030 0.004 0.039 Min. Inches Typ. Max. 0.047 0.006 0.041 0.012 0.0089 0.201 0.260 0.176
A
A2 A1 b e K c L E
D
E1
PIN 1 IDENTIFICATION
1
17/19
Revision history
LM124-LM224-LM324
7
Revision history
Date 1-Oct.-2003 2-Jan-2005 1-Jun-2005 2-Jan-2006 4-Oct-2006 Revision 1 2 3 4 5 First release. Modifications on AMR Table 1 on page 4 (explanation of Vid and Vi limits). ESD protection inserted in Table 1 on page 4. Tj and Rthjc parameters added in Table 1. on page 4. Editorial update. Table 3 moved to Section 5: Macromodels on page 12. Changes
18/19
LM124-LM224-LM324
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
19/19


▲Up To Search▲   

 
Price & Availability of LM324PT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X